Storm petrels as indicators of pelagic seabird exposure to chemical elements in the Antarctic marine ecosystem.

Research paper by Aneta Dorota AD Pacyna, Dariusz D Jakubas, Anne N M A ANMA Ausems, Marcin M Frankowski, Żaneta Ż Polkowska, Katarzyna K Wojczulanis-Jakubas

Indexed on: 26 Jun '20Published on: 28 Jul '19Published in: Science of the Total Environment


Data on trace element bioavailability in the south-polar marine ecosystem is still scarce, compared to that relating to temperate zones. Seabirds can be used as indicators of ecosystem health and sentinels of environmental pollution, constituting a link between marine and terrestrial environments. Here, we analysed the concentration of 17 elements (with special emphasis on mercury, Hg) in feathers of adults and chicks of two pelagic seabirds - the Wilson's storm petrel Oceanites oceanicus and the black-bellied storm petrel Fregetta tropica - breeding sympatrically in the maritime Antarctic. Since adult feathers are formed during the non-breeding period away from the breeding grounds, but down and body feathers of chicks grow at the breeding sites, we were able to evaluate the birds' exposure to contaminants at various stages of their annual life cycle and in various marine zones. We found that of the two studied species, adult black-bellied storm petrels had significantly higher mercury, selenium and copper levels (5.47 ± 1.61; 5.19 ± 1.18; 8.20 ± 0.56 μg g dw, respectively) than Wilson's storm petrels (2.38 ± 1.47; 1.81 ± 0.98; 2.52 ± 2.35 μg g dw, respectively). We found that Wilson's storm petrel chicks had a significantly different contaminant profile than adults. Arsenic, bismuth and antimony were detected exclusively in the chick feathers, and the Se:Hg molar ratio was higher in chicks than in adults. Our study also suggests considerable maternal transfer of Hg (to down feathers) in both species. As global contaminant emissions are expected to increase, birds inhabiting remote areas with sparse anthropogenic pollution can indicate the temporal trends in global contamination. Copyright © 2019 Elsevier B.V. All rights reserved.