Species abundance distribution and dynamics in two locally coupled communities.

Research paper by Petro P Babak, Fangliang F He

Indexed on: 14 Jun '08Published on: 14 Jun '08Published in: Journal of Theoretical Biology


This study considered a model for species abundance dynamics in two local community (or islands) connected to a regional metacommunity. The model was analyzed using continuous probabilistic technique that employs Kolmogorov-Fokker-Planck forward equation to derive the probability density of the species abundance in the two local communities. Using this technique, we proposed a classification for the species abundance dynamics in the local communities. This classification was made based on such characteristics as immigration intensity, species representation in the metacommunity and the size of local communities. We further distinguished several different scenarios for species abundance dynamics using different ecological characteristics such as species persistence, extinction and monodominance in one or both local communities. The similarity of the species abundance distributions between the two local communities was studied using the correlation coefficient between species abundances in two local communities. The correlation is a function of migration rates between local communities and between local and metacommunity. Immigration between local communities drives the homogenization of the local communities, while immigration from the metacommunity will differentiate them. This community subdivision model provides useful insights for studying the effect of landscape fragmentation on species diversity.