Quantcast

Spatially Resolved STIS Spectroscopy of Betelgeuse's Outer Atmosphere

Research paper by A. Lobel, J. Aufdenberg, A. K. Dupree, R. L. Kurucz, R. P. Stefanik, G. Torres

Indexed on: 02 Dec '03Published on: 02 Dec '03Published in: Astrophysics



Abstract

We present spatially resolved spectra observed with HST-STIS of the upper chromosphere and dust envelope of Alpha Orionis (M2 Iab). In the fall of 2002 a set of five high-resolution near-UV spectra was obtained by scanning at intensity peak-up position and four off-limb target positions up to one arcsecond, using a small aperture, to investigate the thermal conditions and flow dynamics in the outer atmosphere of this important nearby cool supergiant star. Based on Mg II h & k, Fe II 2716 A, C II 2327 A, and Al II ] 2669 A emission lines we provide the first evidence for the presence of warm chromospheric plasma at least 1 arcsecond away from the star at ~40 R* (1 R*~700 Rsun). The STIS spectra reveal that Betelgeuse's upper chromosphere extends far beyond the circumstellar H alpha envelope of ~5 R*, determined from previous ground-based imaging. The flux in the broad and self-absorbed resonance lines of Mg II decreases by a factor of ~700 compared to the flux at chromospheric disk center. We observe strong asymmetry changes in the Mg II h and Si I resonance line profiles when scanning off-limb, signaling the outward acceleration of gas outflow in the upper chromosphere. From the radial intensity distributions of Fe I and Fe II emission lines we determine the radial non-LTE iron ionization balance. We compute that the local kinetic gas temperatures of the warm chromospheric gas component in the outer atmosphere exceed 2600 K, when assuming local gas densities of the cool gas component we determine from radiative transfer models that fit the 9.7 um silicate dust emission feature. The spatially resolved STIS spectra directly demonstrate that warm chromospheric plasma co-exisists with cool gas in Betelgeuse's circumstellar dust envelope.