Quantcast

Spatial extremes: Models for the stationary case

Research paper by Laurens de Haan, Teresa T. Pereira

Indexed on: 16 May '06Published on: 16 May '06Published in: Mathematics - Statistics



Abstract

The aim of this paper is to provide models for spatial extremes in the case of stationarity. The spatial dependence at extreme levels of a stationary process is modeled using an extension of the theory of max-stable processes of de Haan and Pickands [Probab. Theory Related Fields 72 (1986) 477--492]. We propose three one-dimensional and three two-dimensional models. These models depend on just one parameter or a few parameters that measure the strength of tail dependence as a function of the distance between locations. We also propose two estimators for this parameter and prove consistency under domain of attraction conditions and asymptotic normality under appropriate extra conditions.