Some numerical radius inequalities for semi-Hilbert space operators

Research paper by Kais Feki

Indexed on: 03 Jan '20Published on: 02 Jan '20Published in: arXiv - Mathematics - Functional Analysis


Let $A$ be a positive bounded linear operator acting on a complex Hilbert space $\big(\mathcal{H}, \langle \cdot\mid \cdot\rangle \big)$. Let $\omega_A(T)$ and ${\|T\|}_A$ denote the $A$-numerical radius and the $A$-operator seminorm of an operator $T$ acting on the semi-Hilbertian space $\big(\mathcal{H}, {\langle \cdot\mid \cdot\rangle}_A\big)$ respectively, where ${\langle x\mid y\rangle}_A := \langle Ax\mid y\rangle$ for all $x, y\in\mathcal{H}$. In this paper, we prove that \begin{equation*} \tfrac{1}{4}\|T^{\sharp_A} T+TT^{\sharp_A}\|_A\le \omega_A^2\left(T\right) \le \tfrac{1}{2}\|T^{\sharp_A} T+TT^{\sharp_A}\|_A. \end{equation*} Here $T^{\sharp_A}$ is denoted to be a distinguished $A$-adjoint operator of $T$. Moreover, some $A$-numerical radius inequalities for products and commutators of semi-Hilbertian space operators are also obtained.