Quantcast

Solving the maximum vertex weight clique problem via binary quadratic programming

Research paper by Yang Wang, Jin-;Kao Hao; Fred Glover; Zhipeng Lü; Qinghua Wu

Indexed on: 08 Aug '16Published on: 01 Aug '16Published in: Journal of Combinatorial Optimization



Abstract

Abstract In recent years, the general binary quadratic programming (BQP) model has been widely applied to solve a number of combinatorial optimization problems. In this paper, we recast the maximum vertex weight clique problem (MVWCP) into this model which is then solved by a probabilistic tabu search algorithm designed for the BQP. Experimental results on 80 challenging DIMACS-W and 40 BHOSLIB-W benchmark instances demonstrate that this general approach is viable for solving the MVWCP problem.AbstractIn recent years, the general binary quadratic programming (BQP) model has been widely applied to solve a number of combinatorial optimization problems. In this paper, we recast the maximum vertex weight clique problem (MVWCP) into this model which is then solved by a probabilistic tabu search algorithm designed for the BQP. Experimental results on 80 challenging DIMACS-W and 40 BHOSLIB-W benchmark instances demonstrate that this general approach is viable for solving the MVWCP problem.