Solution structure and backbone dynamics of human Raf-1 kinase inhibitor protein.

Research paper by Chenyun C Guo, Cuiying C Yi, Yu Y Peng, Yi Y Wen, Donghai D Lin

Indexed on: 23 Jul '13Published on: 23 Jul '13Published in: Biochemical and Biophysical Research Communications


Human Raf-1 kinase inhibitor protein (hRKIP) is a small multi-functional protein of 187 residues. It contains a conserved pocket, which binds a wide range of ligands from various small molecules to distinct proteins. To provide a structural basis for the ligand diversity of RKIP, we herein determined the solution structure of hRKIP, and analyzed its structural dynamics. In solution, hRKIP mainly comprises two antiparallel β sheets, two α helices and two 3₁₀ helices. NMR dynamic analysis reveals that the overall structure of hRKIP is rigid, but its C-terminal helix which is close to the ligand-binding site is mobile. In addition, residues around the ligand-binding pocket exhibit significant conformational exchange on the μs-ms timescale. Conformational flexibility may allow the ligand-binding pocket and the C-terminal helix to adopt various conformations to interact with different substrates. This work may shed light on the underlying molecular mechanisms of how hRKIP recognizes and binds diverse substrate ligands.