Solubilization of a water-insoluble dye in aqueous NaBr solutions of alkylpyridinium bromides and its relation to micellar size and shape

Research paper by Katsuhiko Fujio, Tsunehiro Mitsui, Hiroshi Kurumizawa, Yoshikazu Tanaka, Yuhei Uzu

Indexed on: 24 Apr '03Published on: 24 Apr '03Published in: Colloid and polymer science


In order to investigate the effect of added salt on micelle size, shape, and structure the solubilization of Orange OT in aqueous NaBr solutions of decylpyridinium bromide (DePB), dodecylpyridinium bromide (DPB), tetradecylpyridinium bromide (TPB), and hexadecylpyridinium bromide (CPB) has been examined. The solubilization powers of DePB and DPB micelles increase with increasing NaBr concentration up to 2.86 and 3.07 mol dm–3, respectively, but above these concentrations remain unaltered. This suggests that spherical micelles of DePB and DPB can have a maximum and constant size at NaBr concentrations higher than these threshold concentrations. On the other hand, the solubilization powers of TPB and CPB micelles increase in the whole range of NaBr concentration studied. The dependencies of the solubilization powers of their micelles on the counterion concentration change at 0.10 and 0.03 mol dm–3 NaBr, respectively, as suggests that TPB and CPB micelles undergo the sphere–rod transition at those concentrations. Orange OT is a more suitable probe for detecting the presence of the maximum- and constant-size spherical micelle than Sudan Red B.