# Sobolev trace theorem on Morrey-type spaces on $\beta$-Hausdorff
dimensional surfaces

Research paper by **Marcelo F. de Almeida, Lidiane S. M. Lima**

Indexed on: **07 May '21**Published on: **03 Nov '19**Published in: **arXiv - Mathematics - Analysis of PDEs**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

In this note we strengthen to Morrey-Lorentz spaces the Sobolev-trace
principle discovered by D. R. Adams and extended to many functions spaces by
Adams, Xiao and Liu. More precisely, we show that Riesz potential $I_{\alpha}$
mapping \begin{equation}
I_{\alpha}:\mathcal{M}_{pl}^{\lambda}(\mathbb{R}^n,d\nu)\longrightarrow\mathcal{M}_{qs}^{\lambda_{\star}}(M,\,d\mu),\nonumber
\end{equation} continuously if, and only if the Radon measure $\mu$, supported
on a $\beta-$dimensional surface $M\subset\mathbb{R}^n$ satisfies
$\mu(B_r(x))\leq C r^{\beta}$ for every $x\in M$ and $r>0$, provided $ n-\alpha
p<\beta\leq n,\; \alpha=\frac{n}{\lambda}-\frac{\beta}{\lambda_\ast}\; \text{
and }\;\frac{\lambda_\ast}{q}\leq \frac{\lambda}{p}\nonumber.\,$ In particular,
we obtain Sobolev trace theorem on Lipschitz domain and we show that
distributional solutions of fractional Laplace equation
$(-\Delta_x)^{\frac{\delta}{2}}v=f$ satisfies $v\in
\mathcal{M}_{qs}^{\lambda_{\star}}(M,\,d\mu)$ if provided $f\in
\mathcal{M}_{pl}^{\lambda}(\mathbb{R}^n,d\nu)$, where \begin{equation} \Vert f
\Vert_{\mathcal{M}^{\lambda_\star}_{qs}(M,d\mu)}=\sup_{x\,\in\,
\text{supp}(\mu),\, r>0}r^{-\beta
\left(\frac{1}{q}-\frac{1}{\lambda_\star}\right)} \Vert
f\Vert_{L^{qs}(\mu\lfloor_{M}(B_r) )}.\nonumber \end{equation}