Quantcast

Simultaneous Separation of Triacylglycerol Enantiomers and Positional Isomers by Chiral High Performance Liquid Chromatography Coupled with Mass Spectrometry.

Research paper by Toshiharu T Nagai, Tetsuaki T Kinoshita, Erika E Kasamatsu, Kazuaki K Yoshinaga, Hoyo H Mizobe, Akihiko A Yoshida, Yutaka Y Itabashi, Naohiro N Gotoh

Indexed on: 25 Nov '20Published on: 13 Sep '19Published in: Journal of oleo science



Abstract

The rapid and simultaneous separation of triacylglycerol (TAG) enantiomers and positional isomers was achieved using chiral high performance liquid chromatography (HPLC). TAGs composed of two fatty acids, which were both saturated (P: palmitic acid or S: stearic acid) and unsaturated (O: oleic acid or L: linoleic acid; e.g., sn-PPO/sn-OPP/sn-POP: 1,2-dipalmitoyl-3-oleoyl-sn-glycerol/1-oleoyl-2,3- dipalmitoyl-sn-glycerol/1,3-dilpalmitoyl-2-oleoylglycerol), were resolved into three peaks using CHIRALPAK IF-3 without recycling on the HPLC system. For example, the mixture of sn-PPO/sn-OPP/sn-POP was resolved in 30 min, although it took 150 min to resolve sn-PPO/sn-OPP using CHIRALCEL ODRH in a previous study using a recycling HPLC system. This novel chiral HPLC method was applicable for the separation of other TAG isomers, including sn-OOP/sn-POO/sn-OPO, sn-PPL/sn-LPP/sn-PLP, sn-LLP/sn-PLL/sn-LPL, sn-SSO/sn-OSS/sn-SOS, sn-OOS/sn-SOO/sn-OSO, sn-SSL/sn-LSS/sn-SLS, and sn-LLS/snSLL/sn-LSL. For TAGs composed of three fatty acids containing both saturated and unsaturated fatty acids, the POL isomers were not sufficiently separated but the PSO and SOL isomers were partially separated into several peaks. Their elution order could be estimated by the fragment ions generated in the ion source of the mass spectrometer. However, TAGs consisting of only saturated or unsaturated fatty acids (e.g., sn-PSP/sn-PPS/sn-SPP and sn-OLO/sn-OOL/sn-LOO) were not separated. This novel chiral HPLC method is especially applicable for the analysis of TAG composition of semi-solid fats such as palm oil.