Simulation on near-field light generated by metal nano-dot on GaAs substrate for heat source of heat-assisted magnetic recording

Research paper by Ryuichi Katayama

Indexed on: 03 Oct '14Published on: 03 Oct '14Published in: Optical Review


Heat-assisted magnetic recording (HAMR) is promising for achieving more than 1 Tb/inch2 recording density. A near-field transducer (NFT), which forms a hot spot of 10–100 nm in diameter on a recording medium, is necessary in HAMR. In this study, localized surface plasmons generated by a metal nano-dot in a novel device for a heat source of heat-assisted magnetic recording were analyzed using a simple model in which a metal hemisphere was formed on a GaAs substrate and a quasi-electrostatic approximation. The scattering and absorption efficiencies as well as the enhancement factor were investigated for several kinds of metal. As a result, their dependence on the wavelength and the polarization direction of the incident light was clarified.