Quantcast

Short-Range-Order for fcc-based binary alloys Revisited from Microscopic Geometry

Research paper by Koretaka Yuge

Indexed on: 04 Jul '17Published on: 04 Jul '17Published in: arXiv - Physics - Disordered Systems and Neural Networks



Abstract

Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot quantitatively explain the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while convensional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.