Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification.

Research paper by Thidarat T Nimchua, Douglas E DE Eveleigh, Usa U Sangwatanaroj, Hunsa H Punnapayak

Indexed on: 02 May '08Published on: 02 May '08Published in: Journal of Industrial Microbiology & Biotechnology


Microfungi were selectively isolated for production of polyethylene terephthalate (PET) fiber-degrading enzymes potentially to be used to modify the surface of polyester fabric. A range of fungi were isolated from plant surfaces and soil samples using a polycaprolactone (PCL) plate-clearing assay technique, and screened for cutinolytic esterase (cutinase) activity. Twenty-two of 115 isolates showed clearing indicating the production of cutinase. The ability of the fungi to produce cutinase in mineral medium (MM) using either potato suberin or PET (1 cm of untreated pre-washed PET fiber) fiber as substrates was assessed based on the hydrolysis of p-nitrophenyl butyrate (p-NPB). All isolates exhibited activity towards p-NPB, isolate PBURU-B5 giving the highest activity with PET fiber as an inducer. PBURU-B5 was identified as Fusarium solani based on its conidial morphology and also nucleotide sequencing from internal transcribed spacer region of the ribosomal RNA gene (rDNA-ITS). Enzymatic modification of PET cloth material properties using crude enzyme from strain PBURU-B5 showed hydrolysis of ester bonds of the PET fiber. The modification of the PET fabric resulted in increase of water and moisture absorption, and general enhancement of hydrophilicity of the fabric, properties that could facilitate processing of fabric ranging from easier dyeing while also yielding a softer feeling fabric for the user.