Quantcast

Saccular-specific hair cell addition correlates with reproductive state-dependent changes in the auditory saccular sensitivity of a vocal fish.

Research paper by Allison B AB Coffin, Robert A RA Mohr, Joseph A JA Sisneros

Indexed on: 27 Jan '12Published on: 27 Jan '12Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience



Abstract

The plainfin midshipman fish, Porichthys notatus, is a seasonal breeding teleost fish for which vocal-acoustic communication is essential for its reproductive success. Female midshipman use the saccule as the primary end organ for hearing to detect and locate "singing" males that produce multiharmonic advertisement calls during the summer breeding season. Previous work has shown that female auditory sensitivity changes seasonally with reproductive state; summer reproductive females become better suited than winter nonreproductive females to detect and encode the dominant higher harmonic components in the male's advertisement call, which are potentially critical for mate selection and localization. Here, we test the hypothesis that these seasonal changes in female auditory sensitivity are concurrent with seasonal increases in saccular hair cell receptors. We show that there is increased hair cell density in reproductive females and that this increase is not dependent on body size since similar changes in hair cell density were not found in the other inner ear end organs. We also observed an increase in the number of small, potentially immature saccular hair bundles in reproductive females. The seasonal increase in saccular hair cell density and smaller hair bundles in reproductive females was paralleled by a dramatic increase in the magnitude of the evoked saccular potentials and a corresponding decrease in the auditory thresholds recorded from the saccule. This demonstration of correlated seasonal plasticity of hair cell addition and auditory sensitivity may in part facilitate the adaptive auditory plasticity of this species to enhance mate detection and localization during breeding.