BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1. Effect of buffer combinations on rotavirus stability at 37° C. for 1 week. Data for the G1 reassortant are shown in panel A and the P1 reassortant in panel B. All values are expressed as pfu/mL normalized to the reference, or 0 day, sample. The buffer combinations are represented as follows: 0.05 M sodium citrate +0.15 M sodium bicarbonate (□), 0.05 M sodium citrate+0.15 M sodium phosphate (∘), 0.05 M lactic acid+0.15 M sodium bicarbonate (), 0.05 M lactic acid+0.15 M sodium phosphate (∇) and 0.20 M sodium succinate+0.05 M sodium phosphate (⋄). All formulations have pH values of 7.
FIG. 2. Acid neutralizing ability of formulation buffers compared to bicarbonate. One mL of each buffer was titrated with 0.01 N HCl. Symbols: 0.4 M sodium bicarbonate (•), 0.1 M sodium citrate+0.3 M sodium phosphate (∘), 0.1 M sodium citrate+0.3 M sodium bicarbonate (+), and 0.2 M sodium succinate+0.1 M sodium phosphate (⋄).
FIG. 3. Stability data for reassortant rotavirus in liquid formulations of 5% sucrose/0.1 M sodium succinate/0.05 M sodium phosphate after storage at various temperatures. Data for G1 rotavirus is shown in panel A and for P1 rotavirus in panel B. Titers are shown per milliliter.
FIG. 4. Stability data for reassortant rotavirus in liquid formulations of 50% sucrose/0.1 M sodium succinate/0.05 M sodium phosphate after storage at various temperatures. Data for G1 rotavirus is shown in panel A and for P1 rotavirus in panel B. Titers are shown per milliliter.
FIG. 5. Stability data for G1 rotavirus liquid formulations with higher buffer, sucrose, and hydrolyzed gelatin concentrations at various temperatures. Panel A shows data for G1 rotavirus in Williams' E media (“WE”), 50% sucrose, 0.2 M sodium succinate, and 0.1 M sodium phosphate. Stability data for vaccine in Williams' E media, 70% sucrose, 0.2 M sodium succinate, and 0.1 M sodium phosphate is shown in panel B. Panel C shows data for G1 rotavirus in 50% sucrose, 0.1 M sodium citrate, and 0.3 M sodium phosphate; panel D shows data for G1 rotavirus in Williams' E media, 50% sucrose, 0.2 M sodium succinate, 0.1 M sodium phosphate, and 5% hydrolyzed gelatin. Titers are shown per milliliter. The 4° C. data points are obscured by the −70° C. and 15° C. data points.
FIG. 6. Stability data for P1 rotavirus liquid formulations with higher buffer, sucrose, and hydrolyzed gelatin concentrations at various temperatures. Panel A shows data for P1 rotavirus in Williams' E media, 50% sucrose, 0.2 M sodium succinate, and 0.1 M sodium phosphate. Stability data for vaccine in Williams' E media, 70% sucrose, 0.2 M sodium succinate, and 0.1 M sodium phosphate is shown in panel B. Panel C shows data for P1 rotavirus in 50% sucrose, 0.1 M sodium citrate, and 0.3 M sodium phosphate; panel D shows data for P1 rotavirus in Williams' E media, 50% sucrose, 0.2 M sodium succinate, 0.1 M sodium phosphate, and 5% hydrolyzed gelatin. Titers are shown per milliliter.
FIG. 7. Stability data for rotavirus liquid formulations in 50% sucrose, 0.1 M sodium succinate, and 0.05 M sodium phosphate after storage at various temperatures. Data for G2 rotavirus is shown in panel A and for G3 in panel B. Titers are shown per milliliter.
FIG. 8. Stability data for G1 rotavirus lyophilized formulations after storage at various temperatures. Panel A shows data for G1 rotavirus dialyzed prior to lyophilization into 1% sucrose, 4% mannitol, and 10 mM sodium phosphate. Stability data for vaccine dialyzed prior to lyophilization into 1% lactose, 4% mannitol, and 10 mM sodium phosphate is shown in panel B. Panel C shows data for G1 rotavirus diluted phosphate prior to lyophilization into 1% sucrose, 4% mannitol, and 75 mM sodium phosphate. Titers are shown per milliliter.
FIG. 9. Stability data for P1 rotavirus lyophilized formulations after storage at various temperatures. Panel A shows data for P1 rotavirus dialyzed prior to lyophilization into 1% sucrose, 4% mannitol, and 10 mM sodium phosphate. Stability data for vaccine dialyzed prior to lyophilization into 1% lactose, 4% mannitol, and 10 mM sodium phosphate is shown in panel B. Panel C shows data for P1 rotavirus diluted prior to lyophilization into 1% sucrose, 4% mannitol, and 75 mM sodium phosphate. Titers are shown per milliliter.
FIG. 10. Stabilizing effect of recombinant human albumin (rHA) on the stability of G1 rotavirus in liquid formulation at 30° C. Potency change values are expressed as log pfu compared to −70° C. samples. The stabilizer is 50% sucrose/0.1 M phosphate/0.2 M citrate/tissue culture medium/pH 6.2 in the presence or absence of rHA.