Quantcast

Room temperature ferromagnetism and ferroelectricity in strained multiferroic BiFeO3 thin films on La0.7Sr0.3MnO3/SiO2/Si substrates

Research paper by M.C. Ramírez-Camacho, C.F. Sánchez-Valdés, J.J. Gervacio-Arciniega, R. Font, C. Ostos, D. Bueno-Baques, M. Curiel, J.L. Sánchez-Llamazares, J.M. Siqueiros, O. Raymond-Herrera

Indexed on: 16 Mar '17Published on: 20 Feb '17Published in: Acta Materialia



Abstract

A novel ferromagnetic state coexisting with ferroelectric ordering at room temperature in strained BiFeO3 (BFO) thin films grown using a sputtering technique on La0.7Sr0.3MnO3/SiO2/Si(100) (LSMO/SOS) substrates is reported. The properties of BFO films with different thicknesses (tBFO = 15, 50, 70, 120, and 140 nm) on 40 nm LSMO layers are explored. [012] out-of-plane highly textured BFO/LSMO stacks grew with rhombohedral structures. LSMO layers are nanostructured in nature, constituted by ferromagnetic single-domain nanoregions induced by the constrain of the SiO2 surface, with TC ∼200 K and high coercive field (HC) of ∼1100 Oe at 2.5 K. BFO films grew epitaxially nanostructured on LSMO, exhibiting ∼4 nm spherical nanoregions. The BFO layers show typical antiferromagnetic behavior (in a greater volume fraction) when made thicker (tBFO > 70 nm). The thinner films (tBFO < 50 nm) display ferromagnetic behavior with TC > 400 K, HC ∼ 1600 Oe for 15 nm and ∼1830 Oe for 50 nm. We propose that such ferromagnetic behavior is originated by the establishment of a new magnetic configuration in the Fe3+<img border="0" alt="single bond" src="http://cdn.els-cdn.com/sd/entities/sbnd" class="glyphImg">O<img border="0" alt="single bond" src="http://cdn.els-cdn.com/sd/entities/sbnd" class="glyphImg">Fe3+ sublattice of the BFO structure, induced by strong hybridization at the interface as consequence of superexchange coupling interactions with the ferromagnetic Mn3+<img border="0" alt="single bond" src="http://cdn.els-cdn.com/sd/entities/sbnd" class="glyphImg">O<img border="0" alt="single bond" src="http://cdn.els-cdn.com/sd/entities/sbnd" class="glyphImg">Mn3+/Mn4+ sublattice of LSMO. All BFO layers show excellent ferroelectric and piezoelectric properties (coercive field ∼ 740 kV/cm, and d33 = 23 p.m./V for 50 nm; ∼200 kV/cm and 55 p.m./V for 140 nm), exhibiting 180° and 109° DWs structures depending on the thickness. Such multiferroic properties predict the potential realization of new magneto-electronic devices integrated with Si technology.

Figure 10.1016/j.actamat.2017.02.030.0.jpg
Figure 10.1016/j.actamat.2017.02.030.1.jpg
Figure 10.1016/j.actamat.2017.02.030.2.jpg
Figure 10.1016/j.actamat.2017.02.030.3.jpg
Figure 10.1016/j.actamat.2017.02.030.4.jpg
Figure 10.1016/j.actamat.2017.02.030.5.jpg
Figure 10.1016/j.actamat.2017.02.030.6.jpg
Figure 10.1016/j.actamat.2017.02.030.7.jpg
Figure 10.1016/j.actamat.2017.02.030.8.jpg