Quantcast

Role of short-range electrostatics in torsional potentials.

Research paper by Michael G MG Darley, Paul L A PL Popelier

Indexed on: 20 Sep '08Published on: 20 Sep '08Published in: Journal of Physical Chemistry A



Abstract

A force field needs to decide if it should contain a torsional potential or not. A helpful guide to this decision should come from a quantum mechanical energy partitioning. Here we analyze the energy profiles of eight simple molecules (ethane, hydrogen peroxide, hydrazine, methanol, acetaldehyde, formamide, acetamide and N-methylacetamide) subject to rotation around a torsion angle. Coulomb interaction energies between all atom pairs in a molecule are monitored during the rotation. Atoms are defined as finite electron density fragments by quantum chemical topology, a method that enables well-defined short-range interactions (1-2, 1-3 and 1-4). Energy profiles of Coulomb interaction energies mostly counteract the ab initio energy profiles. This and future work strives to settle ambiguities in current force field design.