Quantcast

REVIEW Bioactive metals: preparation and properties

Research paper by T. Kokubo, H.-M. Kim, M. Kawashita, T. Nakamura

Indexed on: 01 Feb '04Published on: 01 Feb '04Published in: Journal of Materials Science: Materials in Medicine



Abstract

Some ceramics, such as Bioglass®, sintered hydroxyapatite, and glass-ceramic A-W, spontaneously form a bone-like apatite layer on their surface in the living body, and bond to bone through the apatite layer. These materials are called bioactive ceramics, and are clinically important for use as bone-repairing materials. However, they cannot be used at high-load sites, such as is found in femoral and tibial bones, because their fracture toughness values are not as high as that of human cortical bone. Titanium metal and its alloys have high fracture toughness, and form a sodium titanate layer on its surface when soaked in a 5 M-NaOH solution at 60 °C for 24 h, followed by a heat treatment at 600 °C for 1 h. On moving toward the metal interior, the sodium titanate layer gradually changes into the pure metal within a distance of 1 μm from the surface. The mechanical strength of the titanium metal or a titanium alloy is not adversely affected by these chemical and thermal treatments. The titanium metal and its alloys resulting from the above treatment can release Na+ ions from its surface into a surrounding body fluid via an ion exchange reaction with H3O+ ions, resulting in many Ti–OH groups forming on its surface. These Ti–OH groups initially combine with Ca2+ ions to form amorphous calcium titanate in the body environment, and later the calcium titanate combines with phosphate ions to form amorphous calcium phosphate. The amorphous calcium phosphate eventually transforms into bone-like apatite, and by this process the titanium metals are soon tightly bonded to the surrounding living bone through the bone-like apatite layer. The treated metals have already been subjected to clinical trials for applications in artificial total hip joints. Metallic tantalum has also been found to bond to living bone after it has been subjected to the NaOH and heat treatment to form a sodium tantalate layer on its surface.