Restricted cooperative games on metabolic networks reveal functionally important reactions.

Research paper by Max M Sajitz-Hermstein, Zoran Z Nikoloski

Indexed on: 04 Sep '12Published on: 04 Sep '12Published in: Journal of Theoretical Biology


Understanding the emerging properties of complex biological systems is in the crux of systems biology studies. Computational methods for elucidating the role of each component in the synergetic interplay can be used to identify targets for genetic and metabolic engineering. In particular, we aim at determining the importance of reactions in a metabolic network with respect to a specific biological function. Therefore, we propose a novel game-theoretic framework which integrates restricted cooperative games with the outcome of flux balance analysis. We define productivity games on metabolic networks and present an analysis of their unrestricted and restricted variants based on the game-theoretic solution concept of the Shapley value. Correspondingly, this concept provides a characterization of the robustness and functional centrality for each enzyme involved in a given metabolic network. Furthermore, the comparison of two different environments - feast and famine - demonstrates the dependence of the results on the imposed flux capacities.