Response of vegetation pattern to different landform and water-table depth in Hailiutu River basin, Northwestern China

Research paper by X. M. Jin, R. H. Guo, Q. Zhang, Y. X. Zhou, D. R. Zhang, Z. Yang

Indexed on: 07 Nov '13Published on: 07 Nov '13Published in: Environmental Geology


The spatial distribution of vegetation pattern and vegetation cover fraction (VCF) was quantified with remote sensing data in the Hailiutu River basin, a semiarid area in North China. The moderate resolution imaging spectroradiometer normalized different vegetation index (NDVI) values for 4 years from 2008 to 2011 and field observation data were used to assess the impact of climate factors, landform and depth to water table on vegetation distribution at large scale. In the VCF map, 74 % of the study area is covered with low and low–medium density vegetation, 24 % of the catchment is occupied by medium–high and high-density vegetation, and 2 % of area is bare soil. The relationship between NDVI and climate factors indicated that NDVI is correlated with relative humidity and precipitation. In the river catchment, NDVI increases gradually from landform of sand dune, eolian sand soil to river valley; 92.4 % of low NDVI from 0.15 to 0.3 is mostly distributed in sand dunes and the vegetation type is shrubs. Crops, shrubs and some dry willows dominate in eolian sand soil and 82.5 % of the NDVI varies between 0.2 and 0.35. In the river valley, 70.4 % of NDVI ranges between 0.25 and 0.4, and grass, dry willow and some crops are the main plants. Shrubs development of Korshinsk peashrub and Salix psammophila are dependent on groundwater by analyzing NDVI response to groundwater depth. However, NDVI of Artemisia desertorum had little sensitivity to groundwater.