Quantcast

Response of the East Asian summer monsoon to large volcanic eruptions during the last millennium

Research paper by Wenmin Man, Tianjun Zhou

Indexed on: 20 May '14Published on: 20 May '14Published in: Chinese science bulletin = Kexue tongbao



Abstract

The responses of the East Asian summer monsoon (EASM) to large volcanic eruptions were analyzed using a millennial simulation with the FGOALS-gl climate system model. The model was driven by both natural (solar irradiance, volcanic eruptions) and anthropogenic (greenhouse gases, sulfate aerosols) forcing agents. The results showed cooling anomalies after large volcanic eruptions almost on a global scale. The cooling over the continental region is stronger than that over the ocean. The precipitation generally decreases in the tropical and subtropical regions in the first summer after large volcanic eruptions. Cooling with amplitudes up to −0.3 °C is seen over eastern China in the first summer after large volcanic eruptions. The East Asian continent is dominated by northeasterly wind anomalies and the corresponding summer rainfall exhibits a coherent reduction over the whole of eastern China. An analysis of the surface heat flux suggested the reduction in summer precipitation over eastern China can be attributed to a decrease of moisture vapor over the tropical oceans, and the weakening of the EASM may be attributed to the reduced land–sea thermal contrast after large volcanic eruptions.