Quantcast

Removal of C.I. Reactive Red 2 from aqueous solutions by chitin: an insight into kinetics, equilibrium, and thermodynamics.

Research paper by C H CH Wu, C Y CY Kuo, C H CH Yeh, M J MJ Chen

Indexed on: 20 Jan '12Published on: 20 Jan '12Published in: Water science and technology : a journal of the International Association on Water Pollution Research



Abstract

In this study, C.I. Reactive Red 2 (RR2) was removed from aqueous solutions by chitin. Exactly how the RR2 concentration, chitin dosage, pH, and temperature affected adsorption of RR2 by chitin was then determined. After reaction for 120 min, the amount of 10 and 20 mg/L RR2 absorbed onto chitin was 5.7 and 7.5 mg/g, respectively. The adsorption percentage increased from 56 to 94% when the chitin dosage was increased from 1.5 to 2.5 g/L. Experimental results indicated that the pseudo-second-order model best represents adsorption kinetics. Adsorption of RR2 increased as the temperature increased; however, it decreased with an increased pH. Experimental results further demonstrated that the Freundlich model is superior to the Langmuir model in fitting experimental isotherms. The ΔH° and ΔS° were 16.34 kJ/mol and 152.10 J/mol K, respectively. ΔH° suggested that adsorption of RR2 onto chitin was via physisorption.