Quantcast

[Removal of Algal Organic Matter and Control of Disinfection By-products by Powder Activated Carbon].

Research paper by Yu Y Miao, Hong-Yan HY Zhai, Shan-Shan SS Yu, Jing J Zhang, Chang-Xiang CX Shi

Indexed on: 03 Jul '18Published on: 03 Jul '18Published in: Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.]



Abstract

The removal efficiencies of algal organic matter (AOM) and typical nitrogenous and non-nitrogenous disinfection by-products (DBPs) through adsorption with powder activated carbon (PAC) were investigated. Three-dimensional fluorescence spectroscopy confirmed that PAC adsorption changed the composition of AOM. PAC adsorption showed high removal efficiency for humus-like substances in AOM, but limited removal efficiency for aromatic protein-like substances. When the dosage of PAC was 20 mg·L and the adsorption time ranged from 10 to 30 min, the removal rates of 3.30 mg·L dissolved organic carbon were 20.7%-31.9% for intracellular organic matter (IOM) and 12.6%-19.0% for extracellular organic matter (EOM). The highest removal rates of trihalomethanes by PAC in the chlorination of IOM and EOM were 26.6% and 35.8%, respectively. The highest removal rates of haloacetonitriles were 49.6% and 53.6% in the chlorination of IOM and EOM. The removal of dibromoacetonitrile precursors by PAC was significant. In summary, the PAC had a higher efficiency in reducing the generation of DBPs in EOM chlorination than in IOM chlorination.