Remote Sensing, Vol. 12, Pages 2145: Gudalur Spectral Target Detection (GST-D): ANew Benchmark Dataset and Engineered Material Target Detection in Multi-Platform Remote Sensing Data

Research paper by Sudhanshu Shekhar Jha, Rama Rao Nidamanuri

Indexed on: 08 Jul '20Published on: 03 Jul '20Published in: Remote sensing


Target detection in remote sensing imagery, mapping of sparsely distributed materials, has vital applications in defense security and surveillance, mineral exploration, agriculture, environmental monitoring, etc. The detection probability and the quality of retrievals are functions of various parameters of the sensor, platform, target–background dynamics, targets’ spectral contrast, and atmospheric influence. Generally, target detection in remote sensing imagery has been approached using various statistical detection algorithms with an assumption of linearity in the image formation process. Knowledge on the image acquisition geometry, and spectral features and their stability across different imaging platforms is vital for designing a spectral target detection system. We carried out an integrated target detection experiment for the detection of various artificial target materials. As part of this work, we acquired a benchmark multi-platform hyperspectral and multispectral remote sensing dataset named as ‘Gudalur Spectral Target Detection (GST-D)’ dataset. Positioning artificial targets on different surface backgrounds, we acquired remote sensing data by terrestrial, airborne, and space-borne sensors on 20th March 2018. Various statistical and subspace detection algorithms were applied on the benchmark dataset for the detection of targets, considering the different sources of reference target spectra, background, and the spectral continuity across the platforms. We validated the detection results using the receiver operation curve (ROC) for different cases of detection algorithms and imaging platforms. Results indicate, for some combinations of algorithms and imaging platforms, consistent detection of specific material targets with a detection rate of about 80% at a false alarm rate between to .Target detection in satellite imagery using reference target spectra from airborne hyperspectral imagery match closely with the satellite imagery derived reference spectra. The ground-based in-situ reference spectra offer a quantifiable detection in airborne or satellite imagery. However, ground-based hyperspectral imagery has also provided an equivalent target detection in the airborne and satellite imagery paving the way for rapid acquisition of reference target spectra. The benchmark dataset generated in this work is a valuable resourcefor addressing intriguing questions in target detection using hyperspectral imagery from a realistic landscape perspective.