Remote Sensing, Vol. 10, Pages 1630: Estimation of LAI in Winter Wheat from Multi-Angular Hyperspectral VNIR Data: Effects of View Angles and Plant Architecture

Research paper by Hanyue Chen, Wenjiang Huang, Wang Li, Zheng Niu, Liming Zhang, Shihe Xing

Indexed on: 17 Oct '18Published on: 13 Oct '18Published in: Remote sensing


View angle effects present in crop canopy spectra are critical for the retrieval of the crop canopy leaf area index (LAI). In the past, the angular effects on spectral vegetation indices (VIs) for estimating LAI, especially in crops with different plant architectures, have not been carefully assessed. In this study, we assessed the effects of the view zenith angle (VZA) on relationships between the spectral VIs and LAI. We measured the multi-angular hyperspectral reflectance and LAI of two cultivars of winter wheat, erectophile (W411) and planophile (W9507), across different growing seasons. The reflectance of each angle was used to calculate a variety of VIs that have already been published in the literature as well as all possible band combinations of Normalized Difference Spectral Indices (NDSIs). The above indices, along with the raw reflectance of representative bands, were evaluated with measured LAI across the view zenith angle for each cultivar of winter wheat. Data analysis was also supported by the use of the PROSAIL (PROSPECT + SAIL) model to simulate a range of bidirectional reflectance. The study confirmed that the strength of linear relationships between different spectral VIs and LAI did express different angular responses depending on plant type. LAI–VI correlations were generally stronger in erectophile than in planophile wheat types, especially at the zenith angle where the background is expected to be more evident for erectophile type wheat. The band combinations and formulas of the indices also played a role in shaping the angular signatures of the LAI–VI correlations. Overall, off-nadir angles served better than nadir angle and narrow-band indices, especially NDSIs with combinations of a red-edge (700~720 nm) and a green band, were more useful for LAI estimation than broad-band indices for both types of winter wheat. But the optimal angles much differed between two plant types and among various VIs. High significance (R2 > 0.9) could be obtained by selecting appropriate VIs and view angles on both the backward and forward scattering direction. These results from the in-situ measurements were also corroborated by the simulation analysis using the PROSAIL model. For the measured datasets, the highest coefficient was obtained by NDSI(536,720) at −35° in the backward (R2 = 0.971) and NDSI(571,707) at 55° in the forward scattering direction (R2 = 0.984) for the planophile and erectophile varieties, respectively. This work highlights the influence of view geometry and plant architecture. The identification of crop plant type is highly recommended before using remote sensing VIs for the large-scale mapping of vegetation biophysical variables.