Quantcast

Relativistic version of the imaginary-time formalism

Research paper by V. D. Mur, B. M. Karnakov, V. S. Popov

Indexed on: 01 Sep '98Published on: 01 Sep '98Published in: Journal of Experimental and Theoretical Physics



Abstract

A relativistic version of the quasiclassical imaginary-time formalism is developed. It permits calculation of the tunneling probability of relativistic particles through potential barriers, including barriers lacking spherical symmetry. Application of the imaginary-time formalism to concrete problems calls for finding subbarrier trajectories which are solutions of the classical equations of motion, but with an imaginary time (and thus cannot be realized in classical mechanics). The ionization probability of an s level, whose binding energy can be of the order of the rest energy, under the action of electric and magnetic fields of different configuration is calculated using the imaginary-time formalism. Besides the exponential factor, the Coulomb and pre-exponential factors in the ionization probability are calculated. The Hamiltonian approach to the tunneling of relativistic particles is described briefly. Scrutiny of the ionization of heavy atoms by an electric field provides an additional argument against the existence of the “Unruh effect.”