Quantcast

Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor.

Research paper by M M Rodewald, D D Herr, H M HM Fraser, G G Hack, R R Kreienberg, C C Wulff

Indexed on: 17 Nov '07Published on: 17 Nov '07Published in: Molecular human reproduction



Abstract

Ovarian follicular and corpus luteum development, including angiogenesis, are characterized by cell-cell rearrangements that may require dynamic changes in cell-cell adhesion. The present study investigates the expression of tight junction proteins occludin and claudin 5 during follicular and luteal development in the primate ovary and after inhibition of vascular endothelial growth factor (VEGF) by VEGF trap treatment. Occludin was localized to the plasma membrane of granulosa cells. During follicular development occludin staining decreased significantly (P < 0.05) and disappeared completely by the ovulatory stage. After inhibition of VEGF, occludin staining was significantly (P < 0.05) higher in the granulosa of secondary and tertiary follicles compared with controls. Claudin 5 was exclusively localized to the theca vasculature. A significant (P < 0.05) increase in staining was detected from the pre-antral to the antral and ovulatory stage. However, dual staining with CD31 revealed that within the theca endothelium the amount of claudin 5 remained constant during follicular development. Treatment with VEGF trap throughout the follicular phase revealed a lack of claudin 5 staining in the theca interna but no difference was observed in the remaining theca externa vasculature. In the corpus luteum, claudin 5 was also localized in the vasculature. Treatment with VEGF trap in the mid-luteal phase resulted in a significant increase in staining (P < 0.05). These results led us to hypothesize that tight junctions are involved in regulation of follicular growth, antrum transition and follicular angiogenesis which is compromised by VEGF inhibition. VEGF may influence luteal vascular permeability by regulation of the endothelial specific tight junction protein claudin 5.