Reconstructing slow-time dynamics from fast-time measurements.

Research paper by David D Chelidze, Ming M Liu

Indexed on: 20 Oct '07Published on: 20 Oct '07Published in: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences


This paper considers a dynamical system subjected to damage evolution in variable operating conditions to illustrate the reconstruction of slow-time (damage) dynamics using fast-time (vibration) measurements. Working in the reconstructed fast-time phase space, phase space warping-based feature vectors are constructed for slow-time damage identification. A subspace of the feature space corresponding to the changes in the operating conditions is identified by applying smooth orthogonal decomposition (SOD) to the initial set of feature vectors. Damage trajectory is then reconstructed by applying SOD to the feature subspace not related to the changes in the operating conditions. The theory is validated experimentally using a vibrating beam, with a variable nonlinear potential field, subjected to fatigue damage. It is shown that the changes in the operating condition (or the potential field) can be successfully separated from the changes caused by damage (or fatigue) accumulation and SOD can identify the slow-time damage trajectory.