Receptor protein tyrosine phosphatase gamma is a marker for pyramidal cells and sensory neurons in the nervous system and is not necessary for normal development.

Research paper by Smaragda S Lamprianou, Nathalie N Vacaresse, Yoshihisa Y Suzuki, Hamid H Meziane, Joseph D JD Buxbaum, Joseph J Schlessinger, Sheila S Harroch

Indexed on: 20 Jun '06Published on: 20 Jun '06Published in: Molecular and cellular biology


In order to gain insight into the biological role of receptor protein tyrosine phosphatase gamma (RPTPgamma), we have generated RPTPgamma-null mice. RPTPgamma was disrupted by insertion of the beta-galactosidase gene under the control of the RPTPgamma promoter. As the RPTPgamma-null mice did not exhibit any obvious phenotype, we made use of these mice to study RPTPgamma expression and thus shed light on potential biological functions of this phosphatase. Inspection of mouse embryos shows that RPTPgamma is expressed in a variety of tissues during embryogenesis. RPTPgamma is expressed in both embryonic and adult brains. Specifically, we detected RPTPgamma expression in cortical layers II and V and in the stratum pyramidale of the hippocampus, indicating that RPTPgamma is a marker for pyramidal neurons. Mixed primary culture of glial cells showed a lack of expression of RPTPgamma in astrocytes and a low expression of RPTPgamma in oligodendrocytes and in microglia. Interestingly, RPTPgamma expression was detected in all sensory organs, including the ear, nose, tongue, eye, and vibrissa follicles, suggesting a potential role of RPTPgamma in sensory neurons. An initial behavioral analysis showed minor changes in the RPTPgamma-null mice.