Recent cancer drug development with xanthone structures.

Research paper by Younghwa Y Na

Indexed on: 10 Jun '09Published on: 10 Jun '09Published in: Journal of Pharmacy and Pharmacology


Objectives Xanthones are simple three-membered ring compounds that are mainly found as secondary metabolites in higher plants and microorganisms. Xanthones have very diverse biological profiles, including antihypertensive, antioxidative, antithrombotic and anticancer activity, depending on their diverse structures, which are modified by substituents on the ring system. Although several reviews have already been published on xanthone compounds, few of them have focused on the anticancer activity of xanthone derivatives. In this review we briefly summarize natural and synthetic xanthone compounds which have potential as anticancer drugs. Key findings The interesting structural scaffold and pharmacological importance of xanthone derivatives have led many scientists to isolate or synthesize these compounds as novel drug candidates. In the past, extensive research has been conducted to obtain xanthone derivatives from natural resources as well as through synthetic chemistry. Xanthones interact with various pharmacological targets based on the different substituents on the core ring. The anticancer activities of xanthones are also dramatically altered by the ring substituents and their positions. Summary The biological activities of synthetic xanthone derivatives depend on the various substituents and their position. Study of the biological mechanism of action of xanthone analogues, however, has not been conducted extensively compared to the diversity of xanthone compounds. Elucidation of the exact biological target of xanthone compounds will provide better opportunities for these compounds to be developed as potent anticancer drugs. At the same time, modification of natural xanthone derivatives aimed at specific targets is capable of expanding the biological spectrum of xanthone compounds.