Quantcast

Quantum interference within the complex quantum Hamilton-Jacobi formalism

Research paper by Chia-Chun Chou, Angel S. Sanz, Salvador Miret-Artes, Robert E. Wyatt

Indexed on: 26 May '10Published on: 26 May '10Published in: Quantum Physics



Abstract

Quantum interference is investigated within the complex quantum Hamilton-Jacobi formalism. As shown in a previous work [Phys. Rev. Lett. 102, 250401 (2009)], complex quantum trajectories display helical wrapping around stagnation tubes and hyperbolic deflection near vortical tubes, these structures being prominent features of quantum caves in space-time Argand plots. Here, we further analyze the divergence and vorticity of the quantum momentum function along streamlines near poles, showing the intricacy of the complex dynamics. Nevertheless, despite this behavior, we show that the appearance of the well-known interference features (on the real axis) can be easily understood in terms of the rotation of the nodal line in the complex plane. This offers a unified description of interference as well as an elegant and practical method to compute the lifetime for interference features, defined in terms of the average wrapping time, i.e., considering such features as a resonant process.