Quantcast

Quantum Black Hole Entropy, Localization and the Stringy Exclusion Principle

Research paper by Joao Gomes

Indexed on: 04 May '17Published on: 04 May '17Published in: arXiv - High Energy Physics - Theory



Abstract

Supersymmetric localization has lead to remarkable progress in computing quantum corrections to BPS black hole entropy. The program has been successful especially for computing perturbative corrections to the Bekenstein-Hawking area formula. In this work, we consider non-perturbative corrections related to polar states in the Rademacher expansion, which describes the entropy in the microcanonical ensemble. We propose that these non-perturbative effects can be identified with a new family of saddles in the localization of the quantum entropy path integral. We argue that these saddles, which are euclidean $AdS_2\times S^1\times S^2$ geometries, arise after turning on singular fluxes in M-theory on a Calabi-Yau. They cease to exist after a certain amount of flux, resulting in a finite number of geometries; the bound on that number is in precise agreement with the stringy exclusion principle. Localization of supergravity on these backgrounds gives rise to a finite tail of Bessel functions in agreement with the Rademacher expansion. As a check of our proposal, we test our results against well-known microscopic formulas for one-eighth and one-quarter BPS black holes in $\mathcal{N}=8$ and $\mathcal{N}=4$ string theory respectively, finding agreement. Our method breaks down precisely when mock-modular effects are expected in the entropy of one-quarter BPS dyons and we comment upon this. Furthermore, we mention possible applications of these results, including an exact formula for the entropy of four dimensional $\mathcal{N}=2$ black holes.