Quantum algorithms for problems in number theory, algebraic geometry,
and group theory

Wim van Dam, Yoshitaka Sasaki

Published:

Quantum computers can execute algorithms that sometimes dramatically
outperform classical computation. Undoubtedly the best-known example of this is
Shor's discovery of an efficient quantum algorithm for factoring integers,
whereas the same problem appears to be intractable on classical computers.
Understanding what other computational problems can be solved significantly
faster using quantum algorithms is one of the major challenges in the theory of
quantum computation, and such algorithms motivate the formidable task of
building a large-scale quantum computer. This article will review the current
state of quantum algorithms, focusing on algorithms for problems with an
algebraic flavor that achieve an apparent superpolynomial speedup over
classical computation.