Quantcast

Quantifying Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics

Research paper by Yin Jiang, Shuzhe Shi, Yi Yin, Jinfeng Liao

Indexed on: 14 Nov '16Published on: 14 Nov '16Published in: arXiv - Nuclear Theory



Abstract

Chiral Magnetic Effect (CME) is the macroscopic manifestation of the fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as anomalous transport current in the fluid dynamics framework. Experimental observation of CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to search for CME in heavy ion collisions. Encouraging evidence of CME-induced charge separation in those collisions has been reported, albeit with ambiguity due to background contamination. Crucial for addressing such issue, is the need of quantitative predictions for CME signal with sophisticated modelings. In this paper we develop such a tool, the Anomalous Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the data-validated VISHNU bulk hydrodynamic flow. With realistic initial conditions and magnetic field lifetime, the AVFD-predicted CME signal could be quantitatively consistent with measured change separation in 200AGeV AuAu collisions.