Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme

Research paper by C. G. van Ginkel, G. B. Rikken, A. G. M. Kroon, S. W. M. Kengen

Indexed on: 01 Nov '96Published on: 01 Nov '96Published in: Archives of Microbiology


A novel enzyme that catalyzes the disproportionation of chlorite into chloride and oxygen was purified from a gram-negative bacterium, strain GR-1 to homogeneity. A four-step purification procedure comprising Q-Sepharose, hydroxyapatite, and phenyl-Superose chromatography and ultrafiltration resulted in a 13.7-fold purified enzyme with a final specific activity of 2.0 mmol min–1 (mg protein)–1. The dismutase obeyed Michaelis-Menten kinetics. The Vmax and Km calculated for chlorite were 2,200 U (mg protein)–1 and 170 μM, respectively. Dismutase activity was inhibited by hydroxylamine, cyanide, and azide, but not by 3-amino-1,2,4-triazole. Chlorite dismutase had a molecular mass of 140 kDa and consisted of four 32-kDa subunits. The enzyme was red-colored and had a Soret peak at 392 nm. Per subunit, it contained 0.9 molecule of protoheme IX and 0.7 molecule of iron. Chlorite dismutase displayed maxima for activity at pH 6.0 and 30° C.