Pseudo-Manifold Geometries with Applications

Research paper by Linfan Mao

Indexed on: 09 Oct '06Published on: 09 Oct '06Published in: Mathematics - General Mathematics


A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only invalided but in multiple distinct ways and a Smarandache n-manifold is a n-manifold that support a Smarandache geometry. Iseri provided a construction for Smarandache 2-manifolds by equilateral triangular disks on a plane and a more general way for Smarandache 2-manifolds on surfaces, called map geometries was presented by the author in [9]-[10] and [12]. However, few observations for cases of n>=3 are found on the journals. As a kind of Smarandache geometries, a general way for constructing dimensional n pseudo-manifolds are presented for any integer n>=2 in this paper. Connection and principal fiber bundles are also defined on these manifolds. Following these constructions, nearly all existent geometries, such as those of Euclid geometry, Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kahler geometry and Finsler geometry, ...,etc., are their sub-geometries.