Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus.

Research paper by Nobutaka N Funa, Yasuo Y Ohnishi, Yutaka Y Ebizuka, Sueharu S Horinouchi

Indexed on: 28 Nov '01Published on: 28 Nov '01Published in: Journal of Biological Chemistry


RppA, a chalcone synthase-related polyketide synthase (type III polyketide synthase) in the bacterium Streptomyces griseus, catalyzes the formation of 1,3,6,8-tetrahydroxynaphthalene (THN) from five molecules of malonyl-CoA. The K(m) value for malonyl-CoA and the k(cat) value for THN synthesis were determined to be 0.93 +/- 0.1 microm and 0.77 +/- 0.04 min(-1), respectively. RppA accepted aliphatic acyl-CoAs with the carbon lengths from C(4) to C(8) as starter substrates and catalyzed sequential condensation of malonyl-CoA to yield alpha-pyrones and phloroglucinols. In addition, RppA yielded a hexaketide, 4-hydroxy-6-(2',4',6'-trioxotridecyl)-2-pyrone, from octanoyl-CoA and five molecules of malonyl-CoA, suggesting that the size of the active site cavity of RppA is larger than any other chalcone synthase-related enzymes found so far in plants and bacteria. RppA was also found to synthesize a C-methylated pyrone, 3,6-dimethyl-4-hydroxy-2-pyrone, by using acetoacetyl-CoA as the starter and methylmalonyl-CoA as an extender. Thus, the broad substrate specificity of RppA yields a wide variety of products.