Promoter elements controlling developmental and environmental regulation of a tobacco ribosomal protein gene L34

Research paper by Ziyu Dai, Jianwei Gao, Kyungsook An, James M. Lee, Gerald E. Edwards, Gynheung An

Indexed on: 01 Dec '96Published on: 01 Dec '96Published in: Plant Molecular Biology


The rpL34 gene, which encodes a cytoplasmic ribosomal protein with a high homology to the rat 60S r-protein L34, was isolated from a genomic library of tobacco (Nicotiana tabacum L. cv. Xanthi-nc). A 1500 bp upstream promoter fragment was fused to the chloramphenicol acetyltransferase (CAT) reporter gene or β-glucuronidase (GUS) reporter gene and transferred into tobacco plants by the Agrobacterium-mediated leaf disk transformation method. Analysis of CAT activity in leaf tissues showed that mechanical wounding increased the rpL34 promoter activity about 5 times as compared to untreated controls and that the promoter activity was further enhanced by plant growth regulators, 2,4-dichlorophenoxyacetic acid and benzyladenine. Histochemical GUS staining patterns of the transgenic plants showed that the rpL34 promoter activity is high in actively growing tissues, including various meristems, floral organs, and developing fruits. A series of 5′ deletion analyses of the rpL34 promoter indicated that a 50 bp region located between −179 and −129 is essential for wound, auxin and cytokinin responses. Deletion of this region reduced the promoter activity to an undetectable level. Insertion of the 50 nucleotide sequence into a minimal promoter restored the promoter activity and the promoter strength was proportional to the copy number of the upstream sequence. The role of TATA and CAAT box regions was studied by a series of 3′ deletion analyses. A 3′ deletion up to −28 did not significantly affect the promoter strength. However deletion of the promoter up to 70 bp, which deleted the TATA box region, significantly reduced promoter activity. Further deletion of the promoter up to −104, eliminating the CAAT box region, abolished the promoter activity. These results suggest that the TATA box and CAAT box regions are also important for the rpL34 promoter activity in addition to the 50 bp upstream region.