Quantcast

Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds.

Research paper by Bo B Fang, Yi-Zao YZ Wan, Ting-Tang TT Tang, Chuan C Gao, Ke-Rong KR Dai

Indexed on: 07 Feb '09Published on: 07 Feb '09Published in: Tissue engineering. Part A



Abstract

In this study, we prepared hydroxyapatite/bacterial cellulose (HAp/BC) nanocomposite scaffolds utilizing the biomimetic technique, and investigated the proliferation and osteoblastic differentiation of stromal cells derived from human bone marrow (hBMSC) on them. Scanning electron microscopy proved that cells could adhere and spread on scaffolds. The hBMSC seeded on the nanocomposites exhibited better adhesion and activity than those seeded upon the pure BC. After 6 days of culture on scaffolds, the cells proliferated faster on the nanocomposites than on the pure BC, as assessed by Alamar Blue assay. Real-time reverse transcription PCR results showed that the alkaline phosphatase (ALP) activity of hBMSC and the expression of osteopontin, osteocalcin, bone sialoprotein, and ALP mRNA were all higher for up to 7 days for hBMSC cultured on the nanocomposites than for those cultured upon the pure BC with and without the presence of osteogenic supplements (L-ascorbic acid, glycerophosphate, and dexamethasone, p<0.05). These results suggest that the attachment, proliferation, and differentiation in cultured hBMSC can be modulated by the HAp/BC nanocomposite scaffold properties. In summary, we have developed a scaffold that displays in vitro biocompatibility, which may have potential use for bone tissue engineering.