Progressive mitochondrial compromise in brains and livers of primates exposed in utero to nucleoside reverse transcriptase inhibitors (NRTIs).

Research paper by Rao L RL Divi, Tracey L TL Einem, Sarah L Leonard SL Fletcher, Marie E ME Shockley, Maryanne M MM Kuo, Marisa C MC St Claire, Anthony A Cook, Kunio K Nagashima, Steven W SW Harbaugh, Jeffrey W JW Harbaugh, Miriam C MC Poirier

Indexed on: 13 Aug '10Published on: 13 Aug '10Published in: Toxicological sciences : an official journal of the Society of Toxicology


Mitochondrial compromise has been documented in infants born to women infected with the human immunodeficiency virus (HIV-1) who received nucleoside reverse transcriptase inhibitor (NRTI) therapy during pregnancy. To model these human exposures, we examined mitochondrial integrity at birth and 1 year in brain cortex and liver from offspring of retroviral-free Erythrocebus patas dams-administered human-equivalent NRTI doses for the last half (10 weeks) of gestation. Additional infants, followed for 1 year, were given the same drugs as their mothers for the first 6 weeks of life. Exposures included: no drug, Zidovudine (AZT), Lamivudine (3TC), AZT/3TC, AZT/Didanosine (ddI), and Stavudine (d4T)/3TC. In brain and liver, oxidative phosphorylation (OXPHOS) enzyme activities (complexes I, II, and IV) showed minimal differences between unexposed and NRTI-exposed offspring at both times. Brain and liver mitochondria from most NRTI-exposed patas, both at birth and 1 year of age, contained significant (p < 0.05) morphological damage observed by electron microscopy (EM), based on scoring of coded photomicrographs. Brain and liver mitochondrial DNA (mtDNA) levels in NRTI-exposed patas were depleted significantly in the 3TC and d4T/3TC groups at birth and were depleted significantly (p < 0.05) at 1 year in all NRTI-exposed groups. In 1-year-old infants exposed in utero to NRTIs, mtDNA depletion was 28.8-51.8% in brain and 37.4-56.5% in liver. These investigations suggest that some NRTI-exposed human infants may sustain similar mitochondrial compromise in brain and liver and should be followed long term for cognitive integrity and liver function.

More like this: