A. D. Córcoles, Jay M. Gambetta, Jerry M. Chow, John A. Smolin, Matthew Ware, J. D. Strand, B. L. T. Plourde, M. Steffen


We implement a complete randomized benchmarking protocol on a system of two superconducting qubits. The protocol consists of randomizing over gates in the Clifford group, which experimentally are generated via an improved two-qubit cross-resonance gate implementation and single-qubit unitaries. From this we extract an optimal average error per Clifford of 0.0936. We also perform an interleaved experiment, alternating our optimal two-qubit gate with random two-qubit Clifford gates, to obtain a two-qubit gate error of 0.0653. We compare these values with a two-qubit gate error of ~0.12 obtained from quantum process tomography, which is likely limited by state preparation and measurement errors.