Quantcast

Polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and the blood and salivary ethanol and acetaldehyde concentrations of Japanese alcoholic men.

Research paper by Akira A Yokoyama, Eri E Tsutsumi, Hiromi H Imazeki, Yoshihide Y Suwa, Chizu C Nakamura, Tetsuji T Yokoyama

Indexed on: 19 May '10Published on: 19 May '10Published in: Alcoholism: Clinical and Experimental Research



Abstract

The effects of genetic polymorphism of aldehyde dehydrogenase-2 (ALDH2) on alcohol metabolism are striking in nonalcoholics, and the effects of genetic polymorphism of alcohol dehydrogenase-1B (ADH1B) are modest at most, whereas genetic polymorphisms of both strongly affect the susceptibility to alcoholism and upper aerodigestive tract (UADT) cancer of drinkers.We evaluated associations between ADH1B/ADH1C/ALDH2 genotypes and the blood and salivary ethanol and acetaldehyde levels of 168 Japanese alcoholic men who came to our hospital for the first time in the morning and had been drinking until the day before.The ethanol levels in their blood and saliva were similar, but the acetaldehyde levels in their saliva were much higher than in their blood, probably because of acetaldehyde production by oral bacteria. Blood and salivary ethanol and acetaldehyde levels were both significantly higher in the subjects with the less active ADH1B*1/*1 genotype than in the ADH1B*2 carriers, but none of the levels differed according to ALDH2 genotype. Significant linkage disequilibrium was detected between the ADH1B and ADH1C genotypes, but ADH1C genotype did not affect the blood or salivary ethanol or acetaldehyde levels. High blood acetaldehyde levels were found even in the active ALDH2*1/*1 alcoholics, which were comparable with the levels of the inactive heterozygous ALDH2*1/*2 alcoholics with less active ADH1B*1/*1. The slope of the increase in blood acetaldehyde level as the blood ethanol level increased was significantly steeper in alcoholics with inactive heterozygous ALDH2*1/*2 plus ADH1B*2 allele than with any other genotype combinations, but the slopes of the increase in salivary acetaldehyde level as the salivary ethanol level increased did not differ between the groups of subjects with any combinations of ALDH2 and ADH1B genotypes.The ADH1B/ALDH2 genotype affected the blood and salivary ethanol and acetaldehyde levels of nonabstinent alcoholics in a different manner from nonalcoholics, and clear effects of ADH1B genotype and less clear effects of ALDH2 were observed in the alcoholics. Alterations in alcohol metabolism as a result of alcoholism may modify the gene effects, and these findings provide some clues in regard to associations between the genotypes and the risks of alcoholism and UADT cancer.