Plasma lipid profile in Nigerians with high--normal blood pressure.

Research paper by Hadiza H Saidu, Kamilu Musa KM Karaye, Basil N BN Okeahialam

Indexed on: 20 Dec '14Published on: 20 Dec '14Published in: BMC Research Notes


High blood pressure levels have been associated with elevated atherogenic blood lipid fraction, but epidemiological surveys often give inconsistent results across population sub-groups. To determine the extent to which there are differences in lipid profile based on blood pressure levels, we assessed lipid profile of subjects with high-normal blood pressure and compared with those of hypertensives and optimally normal blood pressure.The study was a cross-sectional comparative study conducted at Aminu Kano Teaching Hospital, Kano, Nigeria. Fasting lipid levels were examined among randomly selected patients with optimally normal blood pressure (group 1), high-normal blood pressure (group 2) and those with hypertension (group 3). Optimal blood pressure was defined as systolic blood pressure (SBP) of <120 mmHg/or diastolic blood pressure (DBP) of <80 mmHg; and high-normal blood pressure as SBP of 130-139 mmHg and/or DBP of 85-89 mmHg.A total of 300 subjects were studied, 100 in each group. The mean age of subjects in group 1 was 27.32±8.20 years and 60% were female, while that of group 2 was 34.04±6.25 years, and 53% were female, and that for group 3 was 52.81±13.3 years and 56% were female. The mean total cholesterol (TC) for subjects in group1 (3.96±0.40 mmol/L) was significantly lower than levels in group2 (4.55±1.01 mmol/L); P=<0.001. Subjects in group 3 (5.20±1.88 mmol/L), however had statistically significant higher mean TC when compared with group 2; (P=0.03). The difference between the groups for low density lipoprotein cholesterol (LDL-C) and triglycerides (TG) followed the same pattern as that of TC, with statistically significant increasing trend across the blood pressure categories. Levels of high density lipoprotein cholesterol (HDL-C) were however similar across the three groups (group 2 versus group 1; P=0.49, group 2 versus group 3; P=0.9). Increased TC (>5.2 mmol/L) was absent in group1, but found among 11% of group2 subjects and 40% of those in group 3 (P-value for trend<0.001). Mean fasting plasma glucose (FPG) was 3.8±0.4 mmol/L, 4.7±1.1 mmol/L, 5.1±1.9 mmol/L and for subjects in groups 1, 2 and 3 respectively (p>0.05 for groups 2 Vs 1 and p<0.001 for groups 2 Vs 3). The differences in mean body mass index (BMI) between the groups followed a similar trend as that of FPG. Multivariate logistic regression analysis showed that FPG, TG and BMI were the strongest predictors of prehypertension [odds ratio (OR) 10.14, 95% CI (confidence interval) 3.63-28.33, P=0.000; OR 5.75, 95% CI 2.20-15.05, P=0.000; and OR 2.03, 95% CI 1.57-2.62, P=0.000 respectively].The study has shown a significant increase in plasma TC, LDL-C and TG values as blood pressure levels increased from optimally normal, across high-normal to hypertensive levels. There was a similar trend for FPG and BMI, demonstrating the central role that blood pressure plays in these metabolic disorders in Nigerians. These findings are relevant in terms of both prevention and treatment of cardiovascular morbidities and mortality.