PIV measurements of flow in and around scour holes

Research paper by David F. Hill, Brian D. Younkin

Indexed on: 19 May '06Published on: 19 May '06Published in: Experiments in Fluids


Two sets of experiments related to the scour of cohesionless sediment by planar turbulent jets are presented and discussed. The first set of experiments measures the growth of the scour hole and downstream dune as a function of time. Measurements reveal a bedform that is nearly self-similar and whose growth in time is governed by a power-law relationship. The bedform is well represented by three linear segments with slopes near the angle of repose of the sediment. The second set of experiments uses Particle Image Velocimetry to characterize the mean velocity field in the scour hole and above the dune. For this set of experiments, a series of successively larger roughened fixed-bed models was used in place of the mobile bed. The measurements reveal the presence of strong recirculation in the hole and an attached wall jet on the main slope. Discussion of the utility of the present fixed-bed measurements in estimating shear stress along the bed and related application to predictive modeling of hydraulic scour is provided. Discussion of the technical challenges of similar mobile-bed measurements is also given.