Phytoplankton and particulate matter at the Weddell / Scotia Confluence (47°W) in summer 1989, as a final step of a temporal succession (EPOS project)

Research paper by G. Socal, E. M. Nöthig, F. Bianchi, A. Boldrin, S. Mathot, S. Rabitti

Indexed on: 01 Jun '97Published on: 01 Jun '97Published in: Polar biology


During January 1989, phytoplankton biomass and species composition were studied in a north / south transect at the Weddell / Scotia Confluence (47°W), between 57° and 61°30′S. Results showed a diatom bloom in the Scotia Sea (chlorophyll a 1.9 μg l−1, particulate organic carbon 239 μg l−1), dominated by Fragilariopsis cylindrus, Dactyliosolen antarcticus and Chaetoceros dichaeta. Low chlorophyll a / phaeopigments ratios (about 1.4) and silicate concentrations (15 μmol l−1) suggested that this was an advanced bloom phase, probably linked to high grazing pressure. Minimum chlorophyll a values of 0.1–0.2 μg l−1 and particulate organic carbon 46 μg l−1 were found at the Weddell / Scotia Front and in a subsurface layer of the Weddell Sea Water. In the southern part of the transect (61°30′S), in the Weddell Sea, a second surface maximum was found (chlorophyll a 0.9 μg l−1, particulate organic carbon 120 μg l−1), but with a different species composition, with Cryptomonas sp. dominant. Our results show a succession within the diatom community in the Weddell / Scotia Confluence Waters when comparing the three EPOS legs. In the Weddell Sea from spring to summer, nanoflagellates, with only a minor contribution from diatoms, persist over a long period with little change in the community structure. We suggest that the frontal system, together with the receding ice edge and the grazing pressure of either krill or protozooplankton, are mainly responsible for the phytoplankton distribution patterns found.