Physiological conditions conducive to high cell density and high cyanophycin content in Ralstonia eutropha strain H16 possessing a KDPG aldolase gene-dependent addiction system.

Research paper by Kaichien K Lin, Yasser Y Elbahloul, Alexander A Steinbüchel

Indexed on: 15 Nov '11Published on: 15 Nov '11Published in: Applied Microbiology and Biotechnology


The recombinant strain of Ralstonia eutropha H16-PHB(-)4-∆eda (pBBR1MCS-2::cphA (6308)/eda (H16)) presenting a 2-keto-3-desoxy-phosphogluconate (KDPG) aldolase (eda) gene-dependent catabolic addiction system for plasmid maintenance when using gluconate or fructose as sole carbon source was used in this study. The effects of the initial pH, the nitrogen-to-carbon ratio, the inorganic components of medium, the oxygen supply, and the different carbon and nitrogen sources on the cell dry matter (CDM) and the cyanophycin granule polypeptide (CGP) content of the cells were studied in a mineral salts medium (MSM) without any additional amino acids or CGP precursor substrates. The experiments were designed to systematically find out the optimal conditions for growth of cells to high densities and for high CGP contents of the cells. Maximum contents of water-insoluble CGP and water-soluble CGP, contributing to 47.5% and 5.8% (w/w) of CDM, respectively, were obtained at the 30-L scale cultivation when cells were cultivated in MSM medium containing sufficient supplements of fructose, NH(3), K(2)SO(4), MgSO(4)[Symbol: see text]7H(2)O, Fe(Ш)NH(4)-citrate, CaCl(2)[Symbol: see text]2H(2)O, and trace elements (SL6). The molecular masses of water-insoluble and water-soluble CGP ranged from 25 to 31 kDa and from 15 to 21 kDa, respectively. High cell densities of up to 82.8 g CDM/L containing up to 37.8% (w/w) water-insoluble CGP at the 30-L scale cultivation were also obtained. This is by far the best combination of high cell density and high cellular CGP contents ever reported, and it showed that efficient production of CGP at the industrial scale in white biotechnology could be achieved.