Quantcast

Phencyclidine-induced increases in striatal neuron firing in behaving rats: reversal by haloperidol and clozapine

Research paper by I. M. White, G. S. Flory, K. C. Hooper, J. Speciale, D. A. Banks, G. V. Rebec

Indexed on: 01 Jun '95Published on: 01 Jun '95Published in: Journal of Neural Transmission - Parkinson's Disease and Dementia Section



Abstract

Amphetamine and related drugs of abuse facilitate dopamine transmission in the striatum. This action is believed to underlie the increase in firing of striatal motor-related neurons after amphetamine administration in behaving rats. The present study extended this electrophysiological investigation to phencyclidine (PCP), a nonamphetamine psychomotor stimulant that acts primarily as a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) glutamate receptors. Like amphetamine, PCP (1.0, 2.5, or 5.0 mg/kg) increased the activity of striatal motor-related neurons concomitant with behavioral activation. These effects were blocked by subsequent administration of either 1.0 mg/kg haloperidol or 20.0 mg/kg clozapine, typical and atypical neuroleptics, respectively. Dizocilpine (MK-801), another noncompetitive NMDA antagonist, mimicked the effect of PCP. Collectively, these results indicate that amphetamine and NMDA antagonists exert comparable effects on striatal motor-related neurons, suggesting that the response of these cells to psychomotor stimulants is regulated by a dopaminergic-glutamatergic influence.