Phase behavior and self-organized structures of diglycerol monolaurate in different nonpolar organic solvents.

Research paper by Lok Kumar LK Shrestha, Takaaki T Sato, Kenji K Aramaki

Indexed on: 08 May '07Published on: 08 May '07Published in: Langmuir


Nonaqueous phase behavior and reverse micellar structures of diglycerol monolaurate (DGL) in different nonpolar organic solvents, such as n-decane, n-tetradecane, and n-hexadecane, have been studied over a wide range of compositions and temperatures. The equilibrium phases are identified by means of visual observation and small-angle X-ray scattering (SAXS). A solid phase present at lower temperature swells small amount of oils and transforms into a lamellar liquid crystalline structure at higher temperature. The melting temperature of the solid phase is virtually constant at all mixing ratios of the surfactant and oil. With the further increase of temperature, the liquid crystal transforms into an isotropic single-liquid phase near the surfactant axis, whereas there is a coexistence region of two isotropic phases near the solvent axis. The area of the two-liquid (II) phase region depends largely on the hydrocarbon chain length of the oils, the longer chain leading to the wider II area. Accordingly, the DGL surfactant is most miscible with decane, exhibiting a reduced miscibility with increasing solvent hydrocarbon chain length. Increasing temperature enhances the dissolution tendency of the surfactant in oil, where the two-liquid phase transforms into an isotropic single phase. SAXS analysis based on the GIFT technique is used to characterize the structure of the reverse micellar aggregates in the isotropic single-phase liquids. We have demonstrated that instead of changing polarity or a functional group of the solvent molecules, if we optimize the hydrophilic nature of the surfactant head group, the alkyl chain length of the solvent oils can serve as a tunable parameter of the micellar geometry. The hydrophilic surfactant DGL interestingly forms cylindrical micelles in nonpolar oils, decane, and tetradecane in the dilute region above the II phase region. The micellar size shows temperature dependence behavior, and the micellar length goes on increasing with decreasing temperature; eventually we found a signature of the onset of critical fluctuations in the deduced pair-distance distribution function near the phase separation line. The signature of the attractive interaction between the cylindrical reverse aggregates when a phase separation line is approached is likely to be a precursor of critical phenomenon. Doping with a trace of water results in a similar but more pronounced structural enhancement. The transfer free energy of diglycerol moiety from a hydrophilic environment to different hydrocarbon oils may account for these phenomena.