Quantcast

Permutation Totally Symmetric Self-Complementary Plane Partitions

Research paper by Jessica Striker

Indexed on: 07 Jun '18Published on: 06 Jun '18Published in: Annals of Combinatorics



Abstract

Alternating sign matrices and totally symmetric self-complementary plane partitions are equinumerous sets of objects for which no explicit bijection is known. In this paper, we identify a subset of totally symmetric self-complementary plane partitions corresponding to permutations by giving a statistic-preserving bijection to permutation matrices, which are a subset of alternating sign matrices. We use this bijection to define a new partial order on permutations, and prove this new poset contains both the Tamari lattice and the Catalan distributive lattice as subposets. We also study a new partial order on totally symmetric self-complementary plane partitions arising from this perspective and show that this is a distributive lattice related to Bruhat order when restricted to permutations.