Penetration of an artificial arterial thromboembolism in a live animal using an intravascular therapeutic microrobot system.

Research paper by Semi S Jeong, Hyunchul H Choi, Gwangjun G Go, Cheong C Lee, Kyung Seob KS Lim, Doo Sun DS Sim, Myung Ho MH Jeong, Seong Young SY Ko, Jong-Oh JO Park, Sukho S Park

Indexed on: 10 Feb '16Published on: 10 Feb '16Published in: Medical Engineering & Physics


The biomedical applications of wireless robots are an active area of study. In addition to moving to a target lesion, wireless locomotive robots can deliver a therapeutic drug for a specific disease. Thus, they hold great potential as therapeutic devices in blood vessel diseases, such as thrombi and occlusions, and in other diseases, such as cancer and inflammation. During a percutaneous coronary intervention (PCI), surgeons wear a heavy shielding cloth. However, they cannot escape severe radiation exposure owing to unstable shielding. They may also suffer from joint pains because of the weight of the shielding cloth. In addition, the catheters in PCIs are controlled by the surgeon's hand. Thus, they lack steering ability. A new intravascular therapeutic system is needed to address these problems in conventional PCIs. We developed an intravascular therapeutic microrobot system (ITMS) using an electromagnetic actuation (EMA) system with bi-plane X-ray devices that can remotely control a robot in blood vessels. Using this proposed ITMS, we demonstrated the locomotion of the robot in abdominal and iliac arteries of a live pig by the master-slave method. After producing an arterial thromboembolism in a live pig in a partial iliac artery, the robot moved to the target lesion and penetrated by specific motions (twisting and hammering) of the robot using the proposed ITMS. The results reveal that the proposed ITMS can realize stable locomotion (alignment and propulsion) of a robot in abdominal and iliac arteries of a live pig. This can be considered the first preclinical trial of the treatment of an artificial arterial thromboembolism by penetration of a blood clot.